ON THE ABSOLUTE MAHLER MEASURE OF POLYNOMIALS HAVING ALL ZEROS IN A SECTOR

GEORGES RHIN AND CHRISTOPHER SMYTH

Abstract

Let α be an algebraic integer of degree d, not 0 or a root of unity, all of whose conjugates α_{i} are confined to a sector $|\arg z| \leq \theta$. We compute the greatest lower bound $c(\theta)$ of the absolute Mahler measure $\left(\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right)\right)^{1 / d}$ of α, for θ belonging to nine subintervals of $[0,2 \pi / 3]$. In particular, we show that $c(\pi / 2)=1.12933793$, from which it follows that any integer $\alpha \neq 1$ and $\alpha \neq e^{ \pm i \pi / 3}$ all of whose conjugates have positive real part has absolute Mahler measure at least $c(\pi / 2)$. This value is achieved for α satisfying $\alpha+1 / \alpha=\beta_{0}^{2}$, where $\beta_{0}=1.3247 \ldots$ is the smallest Pisot number (the real root of $\beta_{0}^{3}=\beta_{0}+1$).

1. Introduction

Let $P(z) \neq z$ be a monic polynomial with integer coefficients, irreducible over the rationals, of degree $d \geq 1$, and having zeros $\alpha_{1}, \ldots, \alpha_{d}$. Its relative Mahler measure ("height") $M(P)$, given by

$$
M(P)=\prod_{i=1}^{d} \max \left(1,\left|\alpha_{i}\right|\right),
$$

is either 1 (if P is cyclotomic) or thought to be bounded away from 1 by an absolute constant (if P is not cyclotomic) [1, 2]. When the zeros of P are restricted to a closed set V which does not contain the whole unit circle, however, one can say much more. Then, from a result of Langevin [4] there is a constant $c_{V}>1$ such that the absolute Mahler measure $\Omega(P):=M(P)^{1 / d}$ for such P is either 1 or else satisfies

$$
\Omega(P) \geq c_{V}
$$

The aim of this paper is to try to find the largest value for the constants c_{V} when V is the sector $\{z:|\arg z| \leq \theta\}$, where $0 \leq \theta<\pi$. We denote this best value by $c(\theta)$. It is clear that $c(\theta)$ is a nonincreasing function of θ, and, using the polynomials $z^{2 k+1}-2$ as $k \rightarrow \infty$, that $c(\theta) \rightarrow 1$ as $\theta \rightarrow \pi$. We succeed in finding $c(\theta)$ exactly for θ in nine intervals (see the Theorem below). We suspect that in fact $c(\theta)$ is a "staircase" function of θ, which is constant except for finitely many left discontinuities in any interval $[0, \Theta)$ for $\theta<\pi$. [It is clear that $c(\theta)$ would then have infinitely many discontinuities on $[0, \pi)$.

[^0]Table 1. Intervals [$\theta_{i}, \theta_{i}^{\prime}$] where $c(\theta)$ is known exactly. Here $c(\theta)=c\left(\theta_{i}\right)=\Omega(P)$ for $\theta \in\left[\theta_{i}, \theta_{i}^{\prime}\right]$, and b_{i} is a lower bound for $c\left(\theta_{i}-\right)-c\left(\theta_{i}\right)$. The polynomial P is read off from Table 3

i	$\mathbf{c}(\theta)$	θ_{1}	θ_{i}^{\prime}	P	b_{1}
1	1.61803399	0.00000000	17.39	P2	
2	1.53922234	26.40874008	26.65	P7	0.00085
3	1.49363278	30.44014506	30.59	P8	0.00341
4	1.30305506	47.94143202	49.46	P9	0.00002
5	1.25926867	60.89019592	63.87	P12	0.00001
6	1.21060779	73.63161482	73.99	P14	0.00006
7	1.15461811	80.24103363	81.40	P17	0.00006
8	1.12933793	86.70851871	91.40	P18	0.00001
9	1.05542318	112.64711862	115.32	P21	0.00008

Our main result is the following:
Theorem. There is a continuous, monotonically decreasing function $f(\theta)$, which is >1 for $0 \leq \theta \leq 2 \pi / 3$, and a staircase function $g(\theta)>1$ such that

$$
\min (f(\theta), g(\theta)) \leq c(\theta) \leq g(\theta) \quad(0 \leq \theta<\pi)
$$

Table 1 shows nine intervals $\left[\theta_{i}, \theta_{i}^{\prime}\right]$ where $f(\theta)>g(\theta)$, so that $c(\theta)=$ $g(\theta)=g\left(\theta_{i}\right)$ for θ in those intervals. Furthermore, $c(\theta)$ has a discontinuity at $\theta=\theta_{i} \quad(\theta>0)$, a lower bound $b_{i}:=f\left(\theta_{i}\right)-g\left(\theta_{i}\right)$ for $c\left(\theta_{i}-\right)-c\left(\theta_{i}\right)$ being shown in Table 1 also. We call such angles θ_{i} critical angles. The functions f and g are shown in Figure 1.

The function $f(\theta)$ is given by $f(\theta):=\max \left(f_{1}(\theta), f_{2}(\theta), \ldots, f_{9}(\theta)\right)$, where the $f_{i}(\theta)$ are defined as follows:

Let W_{θ} be the sector $\{|z| \leq 1,|\arg z| \leq \theta\}$. Then

$$
\begin{equation*}
f_{i}(\theta)=\left\{\max _{z \in W_{\theta}}\left|z^{a_{i}} \prod_{j} P_{i j}(z)^{e_{i j}}\right|\right\}^{-1 /\left(2 a_{i}+\sum_{j} e_{i j} \operatorname{deg} P_{i j}\right)} \tag{1}
\end{equation*}
$$

where the a_{i}, and $P_{i j}$, and the $e_{i j}$ are given by Table 2 , using the polynomials of Table 3.

Figure 1. The functions $f(\theta)$ and $g(\theta)$. The nine intervals where $f(\theta)>g(\theta)$, and so where $c(\theta)$ is known exactly, are given in Table 1

Table 2. The auxiliary function $A_{i}(z)=z^{a_{i}} \prod_{j} P_{i j}(z)^{e_{i j}}$ used to compute $f_{i}(\theta)(i=1, \ldots, 9)$. (See equation (1).)

1	θ_{1}^{\prime}	Polynomials			$\mathrm{P}_{1 j}$		Exponents		$e_{1 j}$			a_{1}
1	17.39	P1	P2	P3	P4	P5	21021	05609	00135	00264	00053	20831
2	26.65	P1	P6	P7			26358	00726	00255			19499
3	30.59	P1	P8				30077	00387				18762
4	49.46	P1	P9	P10	P11		19000	00964	00642	13732		11807
5	63.87	P1	P11	P12	P13	P14	10218	18924	00572	00369	00989	13958
6	73.99	P1	P11	P14	P15	P16	07363	26215	00525	00436	00033	12974
7	81.40	P1	P11	P17	P18	P19	04785	23747	02185	00299	02617	09215
8	91.40	P1	P11	P18	P19	P20	06679	13137	02400	09200	00808	12168
9	115.32	P1	P11	P19	P20	P21	03973	05717	05892	06225	01039	11251

Table 3. Reciprocal polynomials used in Tables 1 and 2. Here, $d=\operatorname{deg} P$, and $\varphi(P)=\max \{|\arg z|: P(z)=0\}$

P	(1P)	$\varphi^{(P)}$	d		Highest	st ha	f of	fric	ents of	P		
P1	1.000000	0.000000	2	1	-2							
P2	1.618034	0.000000	2	1	-3							
P3	1.610559	18.863480	8	1	-12	58	-143	193				
P4	1.611995	20.717188	12	1	-18	141	-628	1756	-3219	3935		
P5	1.634404	17.665834	16	1	-25	281	-1873	8238	-25211	55246	-88031	102749
P6	1.547928	26.301669	10	1	-14	85	-287	585	-739			
P7	1.539222	26.408740	4	1	-5	9						
P8	1.493633	30.440145	6	1	-8	26	-37					
P9	1.303055	47.941432	6	1	-5	13	-17					
P10	1.300734	50.830684	8	1	-7	26	-53	67				
P11	1.000000	60.000000	2	1	-1							
P12	1.259269	60.890196	6	1	-4	10	-13					
P13	1.245865	68.365783	12	1	-7	30	-85	175	268	309		
P14	1.210608	73.631615	6	1	-3	7	-9					
P15	1.208398	74.983796	8	1	-4	12	-29	25				
P16	1.238359	73.295530	8	1	-4	13	-23	28				
P17	1.154618	80.241034	8	1	-3	8	-13	15				
P18	1.129338	86.708519	6	1	-2	4	-5					
P19	1.000000	90.000000	2	1	0							
P20	1.000000	108.000000	4	1	-1	1						
P21	1.055423	112.647119	8	1	-1	2	-3	3				
P22	1.000000	120.000000	2	1	1							
P23	1.000000	128.571429	6	1	-1	1	-1					

No attempt has been made to get good lower bounds b_{i} in Table 1-their significance lies in the existence of the discontinuity.

The function $g(\theta)$ is the decreasing staircase having left discontinuities at the angles given (in degrees) in Table 4 (next page). The corresponding absolute measure is the new smaller value of $g(\theta)$. There is no mystery about the function $g(\theta)$: it is simply the smallest value of $\Omega(P)$ that we could find, for P having all its zeros in $|\arg z| \leq \theta$.

Alternative representations of the polynomials of Table 4, in terms of polynomials with small coefficients, are given in Table 5 (see p. 299).

As an immediate consequence of the Theorem we have
Corollary. Suppose that P is a monic irreducible polynomial with integer coefficients such that all its zeros have positive real part. Then either $P(z)=z-1$ or $z^{2}-z+1$ or $\Omega(P) \geq 1.12933793$. This constant is best possible, as it is $\Omega\left(z^{6}-2 z^{5}+4 z^{4}-5 z^{3}+4 z^{2}-2 z+1\right)$ (see polynomial 80 of Table 4). [Note that a zero α of polynomial 80 satisfies $\alpha+\alpha^{-1}=\beta_{0}^{2}$, where $\beta_{0}=1.3247 \ldots$ is the smallest Pisot number (satisfying $\beta_{0}^{3}-\beta_{0}-1=0$).]

Table 4. The polynomials having the smallest known absolute measure $\Omega(P)$ among P having all zeros in $|\arg z| \leq \varphi(P)$. (All P shown are reciprocal and $d=\operatorname{deg} P$.) Only those marked with an asterisk $(*)$ have been proved to have the minimum measure for that angle (see Table 1, and the Theorem)

Table 4 (continued)

Table 5. The small-coefficient polynomials Q corresponding to polynomials 1 to 87 of Table 4 (see equation (2)). Polynomials 88 onwards already have small coefficients (see §3)

	$\boldsymbol{\Omega}(\mathrm{P})$	φ	d	k		oef	icie	ts	of	Q					
1	1.618034	0.000000	2	2	1	-1									
2	1.610559	18.863480	8	3	1	0	0	1	1						
3	1.610424	20,118285	22	3	1	-1	-1	1	-1	-1	0	0	0	1	1
4	1.609519	20.181057	14	3	1	0	0	1	0	-1	-1	-1			
5	1.608751	20.218264	12	3	1	0	0	2	3	2	1				
6	1.606025	20.725452	18	3	1	0	-1	-1	-2	-3	-3	-3	-2	-1	
7	1.603439	20.780901	12	3	1	0	-1	0	2	2	1				
8	1.602527	21.026574	18	3	1	0	1	2	1	2	2	2	1	1	
9	1.596760	21.093981	14	3	1	0	1	2	1	2	1	1			
10	1.596415	21.337806	20	3	1	0	0	1	0	0	0	0	-1	-1	-1
11	1.594907	22.049193	18	3	1	0	0	1	1	2	2	3	2	1	
12	1.593718	22.157037	18	3	1	0	0	1	0	0	0	1	1	1	
13	1.592485	22.233640	16	3	1	0	0	1	1	1	-1	-1	-1		
14	1.592390	22.605461	20	3	1	0	-1	-1	-1	0	-1	-2	-3	-2	-1
15	1.591953	22.661028	18	3	1	0	0	1	-1	-1	0	0	0	1	
16	1.587739	22.772696	14	3	1	0	0	1	1	2	1	1			

Table 5 (continued)

2. EARLIER work

The paper of Langevin [4] forms the basis of this investigation. He also showed that $c(\pi / 2)>1.08$ in [5, p. 63]. Earlier, Schinzel [10] had obtained $c(0)=\frac{1}{2}(1+\sqrt{5})=1.61803399$.

The spectrum $\operatorname{Spec}(\theta)=\{\Omega(P): P$ has all zeros in $|\arg z| \leq \theta\}$ is also of interest. In [11] the second author studied $\operatorname{Spec}(0)$. Mignotte [7], in an interesting application of a well-known result of Erdős and Turán on the uniformity of distribution of the arguments of zeros of certain sets of polynomials, showed that, for $\delta>0$ the smallest limit point of $\operatorname{Spec}(\pi-\delta)$ is at least $1+c \delta^{3}$, for an effective positive constant c.

3. Proof of the Theorem: Outline and search

The proof of the Theorem can be regarded simply as finding the functions f and g and proving that they have the values and properties claimed for them in the Theorem. The function g is found by a search, which we will outline shortly. The function f is obtained by semi-infinite linear programming, using the polynomials found in the search. This is described in $\S 4$.

A necessary condition for the exact evaluation of $c(\theta)$ by our method is to actually find the polynomial P with all zeros in $|\arg z| \leq \theta$ for which $\Omega(P)$ is in fact minimal for that sector. In any event, even if the smallest $\Omega(P)$ we find is not minimal, it clearly gives an upper bound for $c(\theta)$. The list of Table 4 and the corresponding staircase function $g(\theta)$ are the result of our search for such smallest $\Omega(P)$, for varying θ.

Our search for polynomials P, with small $\Omega(P)$ and zeros in a given sector, started with exhaustive searches for polynomials of degrees 3 and 4 . For degrees 5 and 6 , ad hoc searches were made, from which it became clear that the best polynomials were usually reciprocal. Further nonexhaustive searches were then made for good reciprocal polynomials of degrees 8 and 10. As a result of this extensive preliminary work, it became clear that the good polynomials were not only reciprocal, but also of one of six special types:

$$
\begin{array}{cc}
z^{n} Q\left(z+z^{-1}-k\right) & (k=3,2,1,0) \\
z^{n} S\left(z+z^{-1}-2\right), & \text { (Types } 1,2,3,4) \tag{2}\\
& \text { (Type 5) } \\
& \text { where } S(x)=Q(1) x^{n} Q(1+1 / x), \text { and } \\
z^{n}(Q(z)+Q(1 / z)) & \text { (Type 6). }
\end{array}
$$

Here, Q is a degree- n monic polynomial with small coefficients, with also $Q(1)= \pm 1$ for the fifth type. The reason for polynomials of these types giving good polynomials appears mysterious, however.

A systematic search was therefore conducted, using small-coefficient Q of degree up to 11 , for polynomials of the six types. The range of coefficients of Q searched over varied with degree and polynomial type. This is how most of the polynomials $P(z)$ in Table 4 were obtained. The corresponding smallcoefficient polynomials Q are shown in Table 5. This table excludes polynomials of the sixth type, since, for these polynomials, the coefficients of Q are the same as the highest half coefficients of P, so that P itself has small coefficients.

The polynomials P of the sixth type with large angle $\varphi(P)=\{\max |\arg z|$: $P(z)=0\}$ were taken from Boyd's tables [3]. It should be recalled, however,
that his tables are the result of a search for polynomials of small relative measure, and so are unlikely to be the polynomials P of smallest absolute Mahler measure for the corresponding $|\arg z| \leq \varphi(P)$. Indeed, we do not expect that all of the unstarred polynomials P in Table 4 have minimal $\Omega(P)$ for their corresponding angle $\varphi(P)$. Rather, we publish the table in order to provide a target for any other enthusiasts to aim at!

We note in passing that Lehmer's polynomial $L(z)=z^{10}+z^{9}-z^{7}-z^{6}-z^{5}-$ $z^{4}-z^{3}+z+1[6,1,2]$, although having the smallest known relative measure >1, does not have the smallest absolute measure for its sector $(\Omega(L)=1.016368$, zeros in $|\arg z| \leq 160.61^{\circ}$), being beaten by polynomial 97 of Table 4.

4. Proof of Theorem: Computation of the function $f(\theta)$

Langevin's proof [4] of his $\Omega(P) \geq c_{V}$ result, mentioned in $\S 1$, has three basic ingredients:
(i) The observation that the set $V_{1}=V \cap\{z \in \mathbb{C}:|z| \leq 1\}$ has transfinite diameter less than 1.
(ii) A result of Kakeya to the effect that for any set W of transfinite diameter less than 1 and symmetric about the real axis there is a nonzero polynomial A with integer coefficients such that $\operatorname{Sup}_{z \in W}|A(z)|<1$.
(iii) Deduction of $\Omega(P) \geq c_{V}$ from (i) and (ii) using $W:=\{z: z \in V$ and $\bar{z} \in V\}$.

For the computation of $f(\theta)=\max _{i=1}^{9} f_{i}(\theta)$, we use, for each f_{i}, an auxiliary polynomial A as in (ii). We choose such A of the form $z^{a} R(z)$, where a is a positive integer and R is a reciprocal polynomial of degree r with integer coefficients. To A is then associated the function

$$
m(\theta)=\sup _{z \in W_{\theta}}|A(z)|^{1 /(2 a+r)}
$$

Then Langevin's argument of (iii) above, which we now reproduce, shows that

$$
\begin{equation*}
\Omega(P) \geq 1 / m(\theta) \quad \text { if } \operatorname{gcd}(P, A)=1 \tag{3}
\end{equation*}
$$

for P irreducible, of degree d, with integer coefficients. For, if $\alpha_{1}, \ldots, \alpha_{d}$ are the zeros of P, then, since $R(z)=z^{r} R\left(z^{-1}\right)$, we have

$$
\begin{aligned}
1 & \leq\left|\prod_{i=1}^{d} \alpha_{i}^{a} R\left(\alpha_{i}\right)\right|=\prod_{\left|\alpha_{i}\right| \leq 1}\left|\alpha_{i}^{a} R\left(\alpha_{i}\right)\right| \cdot \prod_{\left|\alpha_{i}\right|>1}\left|\alpha_{i}^{a+r} R\left(\alpha_{i}^{-1}\right)\right| \\
& =\prod_{\left|\alpha_{i}\right| \leq 1}\left|\alpha_{i}^{a} R\left(\alpha_{i}\right)\right| \cdot \prod_{\left|\alpha_{i}\right|>1}\left|\left(\alpha_{i}^{-1}\right)^{a} R\left(\alpha_{i}^{-1}\right)\right| \cdot \prod_{\left|\alpha_{i}\right|>1} \alpha_{i}^{2 a+r} \\
& \leq m(\theta)^{(2 a+r) d} M(P)^{2 a+r}
\end{aligned}
$$

whence $\Omega(P) \geq 1 / m(\theta)$.
Each $f_{i}(\theta)$ was then defined, as in equation (1), to be the function $1 / m(\theta)$ corresponding to an auxiliary function A chosen so that $f\left(\theta_{i}\right)>g\left(\theta_{i}\right)$, and so that the length of the interval $\left[\theta_{i}, \theta_{i}^{\prime}\right]$ over which $f(\theta)>g(\theta)$ was as long as we could find. Thus, if $g\left(\theta_{i}\right)=\Omega\left(P_{*}\right)$ (Table 4), then $\Omega\left(P_{*}\right)<f_{i}\left(\theta_{i}\right)$. From equation (3) it follows that P_{*} is a factor of A and that, among polynomials with all conjugates in $|\arg z| \leq \theta_{i}$, only factors of A can have absolute measure less than $f_{i}\left(\theta_{i}\right)$. Now P_{*} does indeed divide A, and in fact has the smallest absolute measure among factors of A of measure >1. It follows that $\Omega\left(P_{*}\right)$ is the smallest value of the absolute measure for polynomials having all zeros in
$|\arg z| \leq \theta$ for $\theta \in\left[\theta_{i}, \theta_{i}^{\prime}\right]$. Hence, $c(\theta)=\Omega\left(P_{*}\right)$ for these θ. Furthermore, $\Omega(P) \geq f\left(\theta_{i}\right)=g\left(\theta_{i}\right)+b_{i}=c\left(\theta_{i}\right)+b_{i}$ for any P having all its roots in the sector $|\arg z|<\theta_{i}$, i.e.,

$$
c\left(\theta_{i}-\right)-c\left(\theta_{i}\right) \geq b_{i}
$$

The polynomial A is taken to be of the form

$$
A(z)=z^{a} R(z)=z^{a} P_{1}(z)^{e_{1}} \cdots P_{k}(z)^{e_{k}},
$$

where the polynomials P_{j} are chosen either to be cyclotomic or to have both absolute measure close to $g\left(\theta_{i}\right)$ and all zeros in $|\arg z| \leq \theta_{i}+\varepsilon$, where ε is small (not more than a few degrees). Table 3 shows the actual polynomials chosen.

It was for finding the best choice of exponents a, e_{1}, \ldots, e_{k} that semiinfinite linear programming was needed. This was used in a similar way to our earlier papers ($[8 ; 9 ; 11, \mathrm{II} ; 12]$; see $[11, \mathrm{II}]$ for a brief outline of the method). However, in this case the computation was more complicated, since the region over which optimization was taking place was (the boundary of) a sector instead of a real interval, as previously. Table 2 gives the final exponents obtained.

5. Improving the function f

For simplicity of presentation (and so, at least in principle, checking by the reader!) of our results, we have given f as the maximum of only nine functions f_{i}, each chosen, as described above, to be large around the corresponding critical angle θ_{i}. In fact, we tried many other auxiliary functions A which we chose so that the corresponding function would be large at other angles θ. In no case, however, was $f(\theta)>g(\theta)$, so that $c(\theta)$ could not be evaluated exactly over any more intervals. We would, however, obtain a better lower bound $f^{+}(\theta)$ for $c(\theta)$ than that given by $f(\theta)=\max _{i=1}^{9} f_{i}(\theta)$. For example, Table 6 shows two values of θ where $c(\theta)$ was "nearly" evaluated exactly. Further computation is needed to determine whether the failure of the method for these θ was due to a suboptional choice of A, or to the fact that the polynomial P with truly smallest $\Omega(P)$ for that θ had not been found.

Table 6. Two examples where an improved auxiliary function $A(z)=z^{a} \prod_{j} P_{j}(z)^{e_{j}}$ is used to compute $f^{+}(\theta)$ and hence obtain narrow bounds $f^{+}(\theta) \leq c(\theta) \leq g(\theta)$ for $c(\theta)$

Acknowledgment

Much of this work was done while the second author was visiting the Université de Metz. He wishes to thank the University in general, and the first author in particular, for their hospitality during his visits.

Bibliography

1. D. W. Boyd, Variations on a theme of Kronecker, Canad. Math. Bull. 21 (1978), 129-133.
2. \qquad , Speculations concerning the range of Mahler's measure, Canad. Math. Bull. 24 (4) (1981), 453-469.
3. , Reciprocal polynomials having small measure. I, Math. Comp. 35 (1980), 1361-1377; II, Math. Comp. 53 (1989), 353-357, S1-S5.
4. M. Langevin, Minorations de la maison et de la mesure de Mahler de certains entiers algébriques, C. R. Acad. Sci. Paris 303 (1986), 523-526.
5. \qquad , Calculs explicites de constantes de Lehmer, Univ. de Paris-Sud groupe de travail en théorie analytique et élémentaire des nombres 1986-87, vol. 88-01, pp. 52-68.
\rightarrow D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), 461-479.
6. M. Mignotte, Sur un théorème de M. Langevin, Acta Arith. 54 (1989), 81-86.
7. G. Rhin, Mesures d'irrationalité de $\log 2$, Seminaire de Théorie des Nombres de Bordeaux 1984/5, Université de Boreaux I.
8. \qquad , Approximants de Padé et mesures effectives d'irrationalité, Seminaire de Théorie des Nombres (May 1986), Progr. Math., vol. 71, Birkhäuser, Boston, 1987, pp. 155-164.
9. A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385-399; Addendum 26 (1975), 329-331.
10. C. J. Smyth, On the measure of totally real algebraic integers. I, J. Austral. Math. Soc. Ser. A 30 (1980), 137-149; II, Math. Comp. 37 (1981), 205-208.
11.

URA CNRS no. 399, Département de Mathématique et Informatique, Faculté des Sciences, Université de Metz, Ile du Saulcy, F-57045 Metz Cedex 1, France

E-mail address: rhin@poncelet.univ-metz.fr
Department of Mathematics and Statistics, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland, United Kingdom

E-mail address: chris@maths.ed.ac.uk

[^0]: Received by the editor June 24, 1993 and, in revised form, December 6, 1993.
 1991 Mathematics Subject Classification. Primary 11R04, 12D10.

